
Arguably one of the best ways to detect
malicious threats on macOS is to focus on

persistence. Here, persistence refers to the
means by which software, including malware,

installs itself on a system to ensure it will automatically
re-execute upon startup, user login, or some other
deterministic event. Otherwise, it might never run
again if the user logs out or the system reboots. In
this chapter, I focus solely on enumerating persistent
items. In Part II, where I cover approaches that allow
events to be observed as they occur, I’ll discuss how
to leverage Apple’s Endpoint Security to monitor for
persistence events.

As a shared characteristic of most malware, persistence serves as a
robust detection mechanism capable of uncovering most infections. On

5
P E R S I S T E N C E

120!!!Chapter 5

macOS, malware generally persists in one of two ways: as launch items
(daemons or agents) or as login items. In this chapter, I’ll show you exactly
how to enumerate such items to reveal almost any Mac malware specimen.

Of course, not all macOS malware persists. For example, ransomware
that encrypts user !les or stealers that grab and ex!ltrate sensitive user data
often have no need to run multiple times, and thus rarely install themselves
persistently.

On the other hand, legitimate programs designed to run continuously,
such as auto-updaters, security tools, or even simple helper utilities, also
tend to persist. Thus, the fact that something is persistently installed doesn’t
mean our code should "ag it as malicious.

Examples of Persistent Malware
Because this chapter focuses on uncovering malware that persists as either
a login item or a launch item, let’s start with a brief example of each.
Initially disclosed by the researcher Taha Karim, the WindTail malware tar-
geted employees working in government and critical infrastructure in the
Middle East.1 In a detailed research paper,2 I noted that the malware, which
often masquerades as a PowerPoint presentation named Final_Presentation,
persists itself as a login item to ensure that it automatically re-executes each
time the user logs in. In the malware’s application bundle, we !nd its main
binary, a !le named usrnode. Decompiling this !le uncovers the persistence
logic at the start of its main function:

int main(int argc, const char* argv[])
 r12 = [NSURL fileURLWithPath:NSBundle.mainBundle.bundlePath];

 rbx = LSSharedFileListCreate(0x0, _kLSSharedFileListSessionLoginItems, 0x0);
 LSSharedFileListInsertItemURL(rbx, _kLSSharedFileListItemLast, 0x0, 0x0, r12, 0x0, 0x0);
 ...
}

Once the malware determines where on the host it’s running from, it
invokes the LSSharedFileListCreate and LSSharedFileListInsertItemURL func-
tions to install itself as a persistent login item. This login item makes the
malware visible in the Login Items pane of the System Preferences appli-
cation (Figure#5-1). Apparently, the malware authors considered this an
acceptable trade-off for persistence.

Persistence!!!121

Figure 5-1: WindTail persists itself as a login item named Final_Presentation.

Let’s take a look at another persistent macOS malware specimen.
Named DazzleSpy, this sophisticated nation-state malware leveraged zero-
day vulnerabilities to remotely infect macOS users.3 While DazzleSpy’s
infection vector posed detection challenges, the malware’s approach to
persistence was rather obvious, giving defenders a straightforward way to
detect it.

After gaining initial code execution and escaping the browser sand-
box, DazzleSpy would persist itself as a launch agent that masqueraded as
an Apple software updater. To persist as a launch agent, an item usually
creates a property list in one of the LaunchAgents directories. DazzleSpy
creates a property list within the current user’s Library/LaunchAgents direc-
tory and names its property list com.apple.softwareupdate.plist. The malware’s
binary hardcodes references to the launch agent directory, as well as to the
name of the plist, making them readily visible in the output of the strings
command:

% strings - DazzleSpy/softwareupdate
...
%@/Library/LaunchAgents
/com.apple.softwareupdate.plist

If we load the malware in a decompiler, we !nd a class method named
installDaemon that makes use of these strings. As its name implies, the method
will persistently install the malware (albeit not as a launch daemon, but
rather as an agent):

+(void)installDaemon {
 rax = NSHomeDirectory();
 ...
 var_78 = [NSString stringWithFormat:@"%@/Library/LaunchAgents", rax];
 var_80 = [var_78 stringByAppendingFormat:@"/com.apple.softwareupdate.plist"];
 ...
 var_90 = [[NSMutableDictionary alloc] init];
 var_98 = [[NSMutableArray alloc] init];
 ...
 rax = @(YES);
 [var_90 setObject:rax forKey:@"RunAtLoad"];

122!!!Chapter 5

 [var_90 setObject:@"com.apple.softwareupdate" forKey:@"Label"];
 [var_90 setObject:var_98 forKey:@"ProgramArguments"];
 ...
 [var_90 writeToFile:var_80 atomically:0x0];
...
}

From this decompilation, we can see that the malware !rst dynamically
builds a path to the current user’s Library/LaunchAgents directory and then
appends the string com.apple.softwareupdate.plist to it. It then builds a diction-
ary with keys such as RunAtLoad, Label, and ProgramArguments, whose values
describe how to restart the persisted item, how to identify it, and its path.
To complete the persistence, the malware writes this dictionary to the prop-
erty list !le in the launch agent directory.

By executing the malware on an isolated analysis machine under the
watchful eye of a !le monitor, we can con!rm DazzleSpy’s persistence. As
expected, the !le monitor shows the binary (softwareupdate) creating its
property list !le in the current user’s LaunchAgents directory:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist",
 "process" : {
 "pid" : 1469,
 "name" : "softwareupdate",
 "path" : "/Users/User/Desktop/softwareupdate"
 }
 }
}

Then, by examining the contents of this newly created !le, we can !nd
the path to which the malware has persistently installed itself, /Users/User/
.local/softwareupdate:

<?xml version=”1.0” encoding=”UTF-8”?>
...
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apple.softwareupdate</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/User/.local/softwareupdate</string>
 <string>1</string>
 </array>
 <key>RunAtLoad</key>
 <true/>

Persistence!!!123

 <key>SuccessfulExit</key>
 <true/>
</dict>
</plist>

The malware set the RunAtLoad key to true, so macOS will automatically
restart the speci!ed binary each time the user logs in. In other words,
DazzleSpy has attained persistence.

At the start of this chapter, I mentioned that legitimate software also
persists. How can you determine whether a persisted item is malicious?
Arguably the best way involves examining the item’s code signing informa-
tion using the approaches described in Chapter#3. Legitimate items should
be signed by readily recognizable companies and notarized by Apple.

Malicious persisted items often have common characteristics too.
Consider DazzleSpy, which runs from the hidden .local directory and isn’t
signed or notarized. The name of the malware’s property list, com.apple
.softwareupdate, suggests that this persistent item belongs to Apple. However,
Apple never installs persistent components to users’ LaunchAgents directories,
and all of its launch items reference binaries signed solely by Apple proper.
In these respects, DazzleSpy isn’t an outlier; most malicious persistent items
are equally easy to classify as suspicious due to such anomalies.

Background Task Management
How can we determine whether an item has persisted? A naive approach
is to simply enumerate all .plist !les found in the launch item directories,
which include the system and user LaunchDaemon and LaunchAgent directo-
ries. However, as of macOS 13, Apple encourages developers to move their
launch items directly into their application bundles.4 These changes essen-
tially deprecate persistence via a user’s launch item directories, meaning
that manually enumerating persistent items requires scanning every appli-
cation bundle, which is inef!cient. Moreover, software can persist as login
items, which don’t leverage property lists or dedicated directories.

Luckily, starting with macOS 13, Apple has consolidated the manage-
ment of the most common persistence mechanisms (including launch
agents, launch daemons, and login items) into a proprietary subsystem
named Background Task Management. This subsystem provides the list of
login and launch items that populate the Login Items pane in the System
Preferences application (Figure#5-2).

124!!!Chapter 5

Figure 5-2: Login and launch items shown in the System Preferences app

On my computer, several of my Objective-See tools install themselves as
login items, while Adobe’s cloud-syncing app and Google Chrome’s updater
install persistent launch items.

Of course, we want the ability to obtain this list of persistent items pro-
grammatically, as any persistent malware will likely show up here as well.
Although the components of the Background Task Management subsystem
are proprietary and closed source, dynamic analysis reveals that the subsys-
tem stores detailed metadata about the persistent items it tracks in a single
database !le. For our purposes, the presence of this centralized database is
a godsend. Unfortunately, as its format is proprietary and undocumented,
we have a bit of work in front of us if we’d like to use it.

Examining the Subsystem
Let’s walk through the Background Task Management subsystem’s interac-
tions with this database. Understanding these operations will help us create
a tool capable of programmatically extracting its contents. Using a !le
monitor, we can see that when an item is persisted, the Background Task
Management daemon, backgroundtaskmanagementd, updates a !le in the
/private/var/db/com.apple.backgroundtaskmanagement/ directory. To perform
this operation atomically, it !rst creates a temporary !le, then moves it into
the com.apple.backgroundtaskmanagement directory via a rename operation:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {

Persistence!!!125

 "destination" :
 "/private/var/folders/zz/.../TemporaryItems/.../BackgroundItems-vx.btm",
 "process" : {
 "pid" : 612,
 "name" : "backgroundtaskmanagementd",
 ...
 }
 }
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" :
 "/private/var/folders/zz/.../TemporaryItems/.../BackgroundItems-vx.btm",
 "process" : {
 "pid" : 612,
 "name" : "backgroundtaskmanagementd",
 ...
 }
 }
 ...
}

{
 "event" : "ES_EVENT_TYPE_NOTIFY_RENAME",
 "file" : {
 "source" :
 "/private/var/folders/zz/.../TemporaryItems/.../BackgroundItems-vx.btm",
 "destination" :
 "/private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm",
 "process" : {
 "pid" : 612,
 "name" : "backgroundtaskmanagementd",
 ...
 }
 }
 ...
}

If we disassemble the daemon’s binary, located in the /System/Library/
PrivateFrameworks/BackgroundTaskManagement.framework/Versions/A/Resources/
directory, we !nd references to a format string, BackgroundItems-v%ld.btm, in
storeNameForDatabaseVersion:, a method of the BTMStore class:

+[BTMStore storeNameForDatabaseVersion:]
 pacibsp
 sub sp, sp, #0x20
 stp fp, lr, [sp, #0x10]
 add fp, sp, #0x10
 nop
 ldr x0, =_OBJC_CLASS_$_NSString

126!!!Chapter 5

 str x2, [sp, #0x10 + var_10]
 adr x2, #0x100031f10 ; @"BackgroundItems-v%ld.btm"
 ...

Further reverse engineering reveals that the name of the database
contains a version number, which increases as newer versions of macOS are
released. In the examples shown here, we’ve abstracted this version number
with an x, but on your system, it’s likely to be 8 or higher. Using the file com-
mand, we can see that the contents of the BackgroundItems-vx.btm !le are
stored as a binary property list. To view these details yourself, be sure to sup-
ply the correct version number for your system when running the command:

% file /private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm
/private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm:
Apple binary property list

We can convert the contents of a binary property into XML using plutil.
Unfortunately, the resulting XML contains not only spelling mistakes but
also serialized objects that aren’t readily human readable:

% plutil -p /private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm
{
 "$archiver" => "NSKeyedArchiver"
 "$objects" => [
 0 => "$null"
 1 => {
 "$class" =>
 <CFKeyedArchiverUID 0x600002854240 [0x1e3bcf9a0]>{value = 265}

 "itemsByUserIdentifier" =>
 <CFKeyedArchiverUID 0x600002854260 [0x1e3bcf9a0]>{value = 2}

 "mdmPaloadsByIdentifier" =>
 <CFKeyedArchiverUID 0x600002854280 [0x1e3bcf9a0]>{value = 263}

 "userSettingsByUserIdentifier" =>
 <CFKeyedArchiverUID 0x6000028542a0 [0x1e3bcf9a0]>{value = 257}
 }
 ...

 265 => {
 "$classes" => [
 0 => "Storage"
 1 => "NSObject"
]
 "$classname" => "Storage"
 }
 ...

Serialization is the process of taking an initialized, in-memory object
and converting it to a format in which it can be saved (for example, to a

Persistence!!!127

!le). While serialization is an ef!cient way for programs to interact with
objects, serialized objects aren’t generally human readable. Moreover, if the
objects are of an undocumented class, we must !rst understand the internal
details of the class before we can write code that makes sense of them.

As part of the Background Task Management subsystem, Apple ships a
command line utility named sfltool that can interact with BackgroundItems-vx
.btm !les. If executed with the dumpbtm "ag, the tool will deserialize and print
out the !le’s contents:

sfltool dumpbtm

#1:
 UUID: 8C271A5F-928F-456C-B177-8D9162293BA7
 Name: softwareupdate
 Developer Name: (null)
 Type: legacy daemon (0x10010)
 Disposition: [enabled, allowed, visible, notified] (11)
 Identifier: com.apple.softwareupdate
 URL: file:///Library/LaunchDaemons/com.apple.softwareupdate.plist
 Executable Path: /Users/User/.local/softwareupdate
 Generation: 1
 Parent Identifier: Unknown Developer

#2:
 UUID: 9B6C3670-2946-4F0F-B58C-5D163BE627C0
 Name: ChmodBPF
 Developer Name: Wireshark
 Team Identifier: 7Z6EMTD2C6
 Type: curated legacy daemon (0x90010)
 Disposition: [enabled, allowed, visible, notified] (11)
 Identifier: org.wireshark.ChmodBPF
 URL: file:///Library/LaunchDaemons/org.wireshark.ChmodBPF.plist
 Executable Path: /Library/Application Support/Wireshark/ChmodBPF/ChmodBPF
 Generation: 1
 Assoc. Bundle IDs: [org.wireshark.Wireshark]
 Parent Identifier: Wireshark

In this example, the deserialized objects include DazzleSpy (software
update) and Wireshark’s ChmodBPF daemon. As sfltool can produce deseri-
alized output from the proprietary database, reverse engineering it should
help us understand its deserialization and parsing logic. This, in turn, should
enable us to write our own parser capable of enumerating all persistent
items managed by the Background Task Management subsystem, including
any malware.

Dissecting sfltool
While the focus of this book is not on reverse engineering, I’ll brie"y dis-
cuss how to dissect sfltool so you can understand its interactions with other
Background Task Management components and the ever-so-important .btm

128!!!Chapter 5

!le. In a terminal, let’s begin by streaming messages from the system log
while running sfltool with the dumpbtm "ag:

% log stream
...
backgroundtaskmanagementd: -[BTMService listener:shouldAcceptNewConnection:]:
connection=<NSXPCConnection: 0x152307aa0> connection from pid 52886 on mach service named
com.apple.backgroundtaskmanagement

backgroundtaskmanagementd dumpDatabaseWithAuthorization: error=Error
Domain=NSOSStatusErrorDomain Code=0 "noErr: Call succeeded with no error"

As you can see in the log output (which I’ve slightly modi!ed for brevity),
the Background Task Management daemon has received a message from
a process with an ID of 52886 corresponding to the running instance of
sfltool. You can see that the tool has made an XPC connection to the dae-
mon. If the connection succeeds, sfltool can then invoke remote methods
found within the daemon. For example, from the log messages, you see that
it invoked the daemon’s dumpDatabaseWithAuthorization: method to get the
contents of the Background Task Management database.

In Listing 5-1, we try to implement this same approach. We leverage the
private BackgroundTaskManagement framework, which implements necessary
classes, such as BTMManager, and methods including the client-side dumpDatabase
WithAuthorization:error:.

#import <dlfcn.h>
#import <Foundation/Foundation.h>
#import <SecurityFoundation/SFAuthorization.h>

#define BTM_DAEMON "/System/Library/PrivateFrameworks/\
BackgroundTaskManagement.framework/Resources/backgroundtaskmanagementd"

@interface BTMManager : NSObject
 +(id)shared;
 -(id)dumpDatabaseWithAuthorization:(SFAuthorization*)arg1 error:(id*)arg2;
@end

int main(int argc, const char* argv[]) {
 void* btmd = dlopen(BTM_DAEMON, RTLD_LAZY);

 Class BTMManager = NSClassFromString(@"BTMManager");
 id sharedInstance = [BTMManager shared];

 SFAuthorization* authorization = [SFAuthorization authorization];
 [authorization obtainWithRight:"system.privilege.admin"
 flags:kAuthorizationFlagExtendRights error:NULL];

 id dbContents = [sharedInstance dumpDatabaseWithAuthorization:authorization error:NULL];
 ...
}

Listing 5-1: Attempting to dump the Background Task Management database

Persistence!!!129

Unfortunately, this approach fails. As shown in the following log mes-
sages, the failure appears to be due to the fact that our binary (which, in this
instance, has a process ID of 20987) doesn’t possess a private Apple entitle-
ment needed to connect to the Background Task Management daemon:

% log stream
...
backgroundtaskmanagementd: -[BTMService listener:shouldAcceptNewConnection:]:
process with pid=20987 lacks entitlement 'com.apple.private.backgroundtaskmanagement.manage'
or deprecated entitlement 'com.apple.private.coreservices.canmanagebackgroundtasks'

We can con!rm that this is why we can’t connect to the daemon by
reverse engineering the code in the daemon responsible for handling new
XPC connections from clients:

/* @class BTMService */
-(BOOL)listener:(NSXPCListener*)listener
shouldAcceptNewConnection:(NSXPCConnection*)newConnection {
 ...
 x24 = [x0 valueForEntitlement:@"com.apple.private.coreservices.canmanagebackgroundtasks"];
 ...
 if(objc_opt_isKindOfClass(x24, objc_opt_class(@class(NSNumber))) == 0x0 ||
 [x24 boolValue] == 0x0) {
 // Reject the client that is attempting to connect.
 }

In this disassembly, you can see the check for the private entitlement
com.apple.private.coreservices.canmanagebackgroundtasks, which matches the
one we saw in the logs. If the client doesn’t hold it (or the newer com.apple
.private.backgroundtaskmanagement.manage entitlement), the system will deny
the connection.

Using the codesign utility, you can see that sfltool indeed contains the
necessary entitlement:

% codesign -d --entitlements - /usr/bin/sfltool
Executable=/usr/bin/sfltool
[Dict]
 [Key] com.apple.private.coreservices.canmanagebackgroundtasks
 [Value]
 [Bool] true
 [Key] com.apple.private.sharedfilelist.export
 [Value]
 [Bool] true

Since we can’t obtain the private Apple entitlement needed to connect
to the Background Task Management daemon for our own program, we’re
left having to access and parse the database directly from disk.

When given full disk access, it’s easy to access the database’s contents.
However, parsing its contents requires a bit more work, as it contains undoc-
umented serialized objects. Luckily, continued reverse engineering reveals

130!!!Chapter 5

that once the daemon has read the contents of the database, its deserializa-
tion logic starts in a method named _decodeRootData:error:

-(void*)_decodeRootData:(NSData*)data error:(void**)arg3 {
 ...
 x0 = [NSKeyedUnarchiver alloc];
 x21 = [x0 initForReadingFromData:data error:&error];
 ...
 x0 = [x21 decodeObjectOfClass:objc_opt_class(@class(Storage)) forKey:@"store"];

When the Background Task Management daemon reads the contents of
the database, it performs deserialization by following these standard steps:

 1. Reading the contents of the database into memory as an NSData object
 2. Initializing an NSKeyedUnarchiver object with this data
 3. Deserializing the objects in the unarchiver via a call to the NSKeyed

Unarchiver decodeObjectOfClass:forKey: method

Take note of the serialized class name, Storage, and its key in the
archiver, store, as these will come into play shortly. Also note that when the
decodeObjectOfClass:forKey: method is invoked, the initWithCoder: method of
any embedded object is also automatically invoked behind the scenes. This
allows objects to perform their own deserialization.

Writing a Background Task Management Database Parser
We’re now ready to write our own parser. Let’s take what we’ve learned
through reverse engineering and write a tool capable of deserializing the
metadata of all persistent items found in the Background Task Management
database. I’ll walk through the relevant code snippets here, but you can !nd
the entire code for this parser, dubbed DumpBTM, in Objective-See’s GitHub
repository at https://github.com/objective-see/DumpBTM. At the end of this
discussion, I’ll show how you can make use of this library in your own code
to programmatically obtain a list of items persisting on any macOS system.

Finding the Database Path
Let’s begin by writing some code that dynamically !nds the path of the
database. Although it’s located in the /private/var/db/com.apple.background
taskmanagement/ directory, Apple occasionally bumps up the version num-
ber in the name across releases of macOS. Even with these name changes,
though, !nding the database is easy enough through its unique extension,
.btm. The code in Listing 5-2 uses a simple predicate to !nd all .btm !les in
the com.apple.backgroundtaskmanagement directory. There should only be one,
but to be safe, the code grabs the one with the highest version.

#define BTM_DIRECTORY @"/private/var/db/com.apple.backgroundtaskmanagement/"

NSURL* getPath(void) {

https://github.com/objective-see/DumpBTM

Persistence!!!131

 1 NSArray* files = [NSFileManager.defaultManager contentsOfDirectoryAtURL:
 [NSURL fileURLWithPath:BTM_DIRECTORY] includingPropertiesForKeys:nil options:0 error:nil];

 2 NSArray* btmFiles = [files filteredArrayUsingPredicate:[NSPredicate
 predicateWithFormat:@"self.absoluteString ENDSWITH '.btm'"]];

 3 return btmFiles.lastObject;
}

Listing 5-2: Finding the most recent Background Task Management database

First, the code creates a list of all !les in the directory 1. Then, via the
predicate self.absoluteString ENDSWITH '.btm' and the method filteredArray
UsingPredicate:, it creates a second list containing solely .btm !les 2. It then
returns the last !le in this list, which should be the one with the highest
version 3.

Deserializing Background Task Management Files
I noted that the serialized objects in the Background Task Management !le
are instances of undocumented classes speci!c to the subsystem. To deseri-
alize them, we must, at a minimum, provide a class declaration. We found
these classes embedded in the daemon, including the top-level object in the
serialized database that belongs to an undocumented class named Storage.
Recall that we also saw this class name in the plutil output.

This class contains various instance variables that describe its proper-
ties, including a dictionary called itemsByUserIdentifier. To deserialize the
Storage object, we create the declaration shown in Listing 5-3.

@interface Storage : NSObject <NSSecureCoding>
 @property(nonatomic, retain)NSDictionary* itemsByUserIdentifier;
@end

Listing 5-3: The Storage class interface

Further reverse engineering reveals more details about the Storage
class’s itemsByUserIdentifier dictionary. For example, it contains key-value
pairs whose values are of another undocumented Background Task Man-
agement class named ItemRecord. The ItemRecord class contains metadata about
each persistent item managed by the subsystem, such as its path, its code
signing information, and its state (for example, enabled or disabled).

Again, as ItemRecord is an undocumented class, making use of it in
our code requires providing a declaration extracted from the daemon.
Listing#5-4 shows such a declaration.

@interface ItemRecord : NSObject <NSSecureCoding>
 @property NSInteger type;
 @property NSInteger generation;
 @property NSInteger disposition;
 @property(nonatomic, retain)NSURL* url;
 ...

132!!!Chapter 5

 @property(nonatomic, retain)NSString* identifier;
 @property(nonatomic, retain)NSString* developerName;
 @property(nonatomic, retain)NSString* executablePath;
 @property(nonatomic, retain)NSString* teamIdentifier;
 @property(nonatomic, retain)NSString* bundleIdentifier;
@end

Listing 5-4: The ItemRecord class interface

With the relevant classes declared, we’re almost ready to trigger the seri-
alization of all objects in the Background Task Management !le. However, as
the deserialization process invokes each object’s initWithCoder: method, and
each object conforms to the NSSecureCoding protocol, we should provide an
implementation of this method to keep the linker happy and ensure that
deserialization succeeds. To reimplement the initWithCoder: methods for the
undocumented objects, we can use a disassembler to !nd their implemen-
tations. For example, here is the decompilation of the ItemRecord object’s
 initWithCoder: method:

-(void*)initWithCoder:(NSCoder*)decoder {
 x0 = objc_opt_class(@class(NSUUID));
 x0 = [decoder decodeObjectOfClass:x0 forKey:@"uuid"];
 self.uuid = x0;

 x0 = objc_opt_class(@class(NSString));
 x0 = [decoder decodeObjectOfClass:x0 forKey:@"executablePath"];
 self.executablePath = x0;

 x0 = objc_opt_class(@class(NSString));
 x0 = [decoder decodeObjectOfClass: x0 forKey:@"teamIdentifier"];
 self.teamIdentifier = x0;
 ...
}

We can easily mimic the method in our own code (Listing 5-5).

-(id)initWithCoder:(NSCoder *)decoder {
 self = [super init];
 if(nil != self) {
 self.uuid = [decoder decodeObjectOfClass:[NSUUID class] forKey:@"uuid"];

 self.executablePath =
 [decoder decodeObjectOfClass:[NSString class] forKey:@"executablePath"];

 self.teamIdentifier =
 [decoder decodeObjectOfClass:[NSString class] forKey:@"teamIdentifier"];
 ...
 return self;
}

Listing 5-5: A reimplementation of the ItemRecord initWithCoder: method

Persistence!!!133

In our reimplementation of the ItemRecord object’s initWithCoder: method,
we deserialize the properties of the object, including its UUID, executable
path, team identi!er, and more. This is as easy as invoking the decode Object
Of Class:forKey: method for each property on the serialized object that is
passed in as an NSCoder.

However, there is a simpler way to access these methods. As you saw
in the disassembly, the Background Task Management daemon contains
class implementations of serialized Storage and ItemRecord objects, including
their initWithCoder: methods. Thus, if we load and link the daemon binary
into our process’s address space, we’ll have access to those methods without
needing to reimplement them ourselves. As all executables are now compiled
in a position-independent manner, we can link to anything we’d like in our
own program, including the daemon. Listing 5-6 contains the code to load
and link the daemon, then makes use of its objects when triggering the full
deserialization of the objects stored in the database.

#define BTM_DAEMON "/System/Library/PrivateFrameworks/\
BackgroundTaskManagement.framework/Resources/backgroundtaskmanagementd"

1 void* btmd = dlopen(BTM_DAEMON, RTLD_LAZY);

2 NSURL* path = getPath();
3 NSData* data = [NSData dataWithContentsOfURL:path options:0 error:NULL];

4 NSKeyedUnarchiver* keyedUnarchiver =
[[NSKeyedUnarchiver alloc] initForReadingFromData:data error:NULL];

5 Storage* storage = [keyedUnarchiver decodeObjectOfClass:
[NSClassFromString(@"Storage") class] forKey:@"store"];

Listing 5-6: Deserializing Background Task Management objects

After invoking the dlopen function 1, which loads and links the
Background Task Management daemon into a process’s memory space, the
code invokes a helper function we’ve written to get the path of the system’s
Background Task Management database !le 2. Once it has found and
loaded the contents of the database into memory 3, the code initializes a
keyed unarchiver object with the database data 4.

Now the code is ready to trigger the deserialization of the objects in the
database via the keyed archiver’s decodeObjectOfClass:forKey: method. Previously,
I noted that the class of the database’s top-level object is named Storage. As
it’s undocumented, we dynamically resolve it via NSClassFromString(@"Storage").
This resolution succeeds because we’ve loaded the daemon that imple-
ments#this class into our process space. For the key required to begin the
deserialization, we mimic the daemon by specifying the string "store" 5.

Behind the scenes, this code will trigger an invocation of the Storage
class’s initWithCoder: method, giving it a chance to deserialize the top-level
Storage object in the database. Recall that this object includes a dictionary

134!!!Chapter 5

containing an ItemRecord object describing each persisted item. An invoca-
tion to the ItemRecord class’s initWithCoder: method will automatically deseri-
alize these embedded objects.

Accessing Metadata
Once we’ve completed the deserialization, we can access the metadata
about each item persisted on the system and managed by Background Task
Management (Listing 5-7).

int itemNumber = 0;

1 for(NSString* key in storage.itemsByUserIdentifier) {
 2 NSArray* items = storage.itemsByUserIdentifier[key];
 for(ItemRecord* item in items) {
 printf(" #%d\n", ++itemNumber);
 3 printf(" %s\n", [[item performSelector:NSSelectorFromString
 (@"dumpVerboseDescription")] UTF8String]);
 }
}

Listing 5-7: Printing deserialized items

Accessing the metadata is as simple as iterating over the deserialized
Storage object’s itemsByUserIdentifier dictionary 1, which organizes the persis-
tent items by user UUID 2. For all ItemRecord objects, we can invoke the class’s
dumpVerboseDescription method 3 to print out each object in a nicely format-
ted manner. Because we didn’t declare this method in the class interface, we
instead use the Objective-C performSelector: method to invoke it by#name.

Compiling and running the code produces output that provides the
same information as Apple’s closed source sfltool:

% ./dumpBTM
Opened /private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm
...
#1
 UUID: 8C271A5F-928F-456C-B177-8D9162293BA7
 Name: softwareupdate
 Developer Name: (null)
 Type: legacy daemon (0x10010)
 Disposition: [enabled, allowed, visible, notified] (11)
 Identifier: com.apple.softwareupdate
 URL: file:///Library/LaunchDaemons/com.apple.softwareupdate.plist
 Executable Path: /Users/User/.local/softwareupdate
 Generation: 1
 Parent Identifier: Unknown Developer

#2
 UUID: 9B6C3670-2946-4F0F-B58C-5D163BE627C0
 Name: ChmodBPF
 Developer Name: Wireshark
 Team Identifier: 7Z6EMTD2C6
 Type: curated legacy daemon (0x90010)

Persistence!!!135

 Disposition: [enabled, allowed, visible, notified] (11)
 Identifier: org.wireshark.ChmodBPF
 URL: file:///Library/LaunchDaemons/org.wireshark.ChmodBPF.plist
 Executable Path: /Library/Application Support/Wireshark/ChmodBPF/ChmodBPF
 Generation: 1
 Assoc. Bundle IDs: [org.wireshark.Wireshark]
 Parent Identifier: Wireshark

Because most macOS malware persists, this ability to programmatically
enumerate persistently installed items is incredibly important. However,
these enumerations will also include legitimate items, such as Wireshark’s
ChmodBPF demon, as shown here.

Identifying Malicious Items
Of course, when attempting to programmatically detect malware, just
printing out the persistent items isn’t all that helpful. As you just saw, the
Background Task Management database includes metadata about persis-
tently installed items that are benign, so the code must closely examine
each. For example, the !rst item shown in the tool’s output is likely suspi-
cious; its name suggests that it’s a core Apple component, but it’s running
from a hidden directory and is unsigned. (Spoiler alert: it’s DazzleSpy.) On
the other hand, the second item’s code signing information, including its
developer name and team ID, identi!es it as a legitimate component of the
network monitoring and analysis tool Wireshark.

To programmatically extract information from each item, you can
directly access relevant properties of the ItemRecord object. For example,
Listing 5-8 updates the code we wrote in Listing 5-7 to access the path to
each item’s property list, its name, and its executable path.

for(NSString* key in storage.itemsByUserIdentifier) {
 NSArray* items = storage.itemsByUserIdentifier[key];

 for(ItemRecord* item in items) {
 NSURL* url = item.url;
 NSString* name = item.name;
 NSString* path = item.executablePath;
 ...
 }
}

Listing 5-8: Accessing ItemRecord properties

I’ve excerpted the code presented here from the DumpBTM project, a
complete Background Task Management parser. Compiled into a library
for easy linking into other projects, DumpBTM also allows us to extract the
metadata of each persistent item into a dictionary to cleanly abstract away
the internals of the undocumented Background Task Management objects
(Listing 5-9). Other code can then ingest this dictionary, for example, to
examine each item for anomalies or apply heuristics to classify them as
benign or potentially malicious.

136!!!Chapter 5

#define KEY_BTM_ITEM_URL @"url"
#define KEY_BTM_ITEM_UUID @"uuid"
#define KEY_BTM_ITEM_NAME @"name"
#define KEY_BTM_ITEM_EXE_PATH @"executablePath"

NSDictionary* toDictionary(ItemRecord* item) {
 NSMutableDictionary* dictionary = [NSMutableDictionary dictionary];

 dictionary[KEY_BTM_ITEM_UUID] = item.uuid;
 dictionary[KEY_BTM_ITEM_URL] = item.url;
 dictionary[KEY_BTM_ITEM_NAME] = item.name;
 dictionary[KEY_BTM_ITEM_EXE_PATH] = item.executablePath;
 ...
 return dictionary;
}

Listing 5-9: Extracting properties into a dictionary

To extract an ItemRecord object’s properties, we simply create a diction-
ary and add each property to it with a key of our choosing.

In the DumpBTM library, an exported function named parseBTM invokes
the toDictionary function shown here. I’ll end this chapter by showing how
your code could make use of the library by invoking parseBTM to obtain a
dictionary containing metadata of all the persistent items stored in the
Background Task Management database.

Using DumpBTM in Your Own Code
When you compile DumpBTM, you’ll !nd two !les in its library/lib direc-
tory: the library’s header !le (dumpBTM.h) and the compiled library
libDumpBTM.a. Add both !les to your project. Include the header !le in
your source code using either an #include or an #import directive, as this !le
contains the library’s exported function de!nitions and constants. If you
link in the compiled library at compile time, your code should be able to
invoke the library’s exported functions (Listing 5-10).

1 #import "dumpBTM.h"
...

2 NSDictionary* contents = parseBTM(nil);

3 for(NSString* uuid in contents[KEY_BTM_ITEMS_BY_USER_ID]) {
 for(NSDictionary* item in contents[KEY_BTM_ITEMS_BY_USER_ID][uuid]) {
 // Add code to process each persistent item.
 }
}

Listing 5-10: Enumerating persistent items

After importing the library’s header !le 1, we invoke its exported
parseBTM function 2. This function returns a dictionary containing all

Persistence!!!137

persistent items managed by the Background Task Management subsystem
and stored in its database, keyed by unique user identi!ers. You can see that
the code iterates over each user identi!er, then over each persistent item 3.

Conclusion
The ability to identify persistently installed items is crucial to detecting
malware. In this chapter, you learned how to programmatically interact with
macOS’s Background Task Management database, which contains the meta-
data of all persistent launch and login items. Though this process required
a brief foray into the internals of the Background Task Management subsys-
tem, we were able to build a complete parser capable of fully deserializing all
objects in the database, providing us with a list of persistently installed items.5

Note, however, that some malware leverages more creative persistence
mechanisms that the Background Task Management subsystem doesn’t track,
and we won’t !nd this malware in the subsystem’s database. Not to worry; in
Chapter#10, we’ll dive into KnockKnock, a tool that uses approaches beyond
Background Task Management to comprehensively uncover persistent mal-
ware found anywhere on the operating system.

This chapter wraps up Part I and the discussion of data collection. You’re
now ready to explore the world of real-time monitoring, which can build the
foundations of a proactive detection approach.

Notes
 1. Thomas Brewster, “Hackers Are Exposing an Apple Mac Weakness in

Middle East Espionage,” Forbes, August#30, 2018, https://www.forbes.com/
sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east
-hacks/#4b6706016fd6.

 2. Patrick Wardle, “Cyber Espionage in the Middle East: Unravelling OSX.
WindTail,” VirusBulletin, October#3, 2019, https://www.virusbulletin.com/
uploads/pdf/magazine/2019/VB2019-Wardle.pdf.

 3. Marc-Etienne#M. Léveillé and Anton Cherepanov, “Watering Hole
Deploys New macOS Malware, DazzleSpy, in Asia,” We Live Security,
January#25, 2022, https://www.welivesecurity.com/2022/01/25/watering-hole
-deploys-new-macos-malware-dazzlespy-asia/.

 4. “Updating Helper Executables from Earlier Versions of macOS,” Apple
Developer Documentation, https://developer.apple.com/documentation/service
management/updating_helper_executables_from_earlier_versions_of_macos.

 5. If you’re interested in learning more about the internals of the
Background Task Management subsystem, including how to reverse
engineer it to understand its components, see my 2023 DEF CON talk,
“Demystifying (& Bypassing) macOS’s Background Task Management,”
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-back
ground-task-management.

https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#4b6706016fd6
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#4b6706016fd6
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#4b6706016fd6
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Wardle.pdf
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://developer.apple.com/documentation/servicemanagement/updating_helper_executables_from_earlier_versions_of_macos
https://developer.apple.com/documentation/servicemanagement/updating_helper_executables_from_earlier_versions_of_macos
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

